
CH34x Serial Port Android Program Manual 1

CH34x series chip serial port function Android program development

manual
Version: 1.3

Introduction
CH340 is a USB bus conversion chip, it can realize USB to UART interface or USB to printer

interface.
In serial UART mode, CH340 provides common MODEM liaison signal, used to expand UART

interface of computer or upgrade the common serial device to USB bus directly. For more information on
USB conversion to printer interface please refer to the manual CH340DS2.

This document describes the CH340/CH341 asynchronous serial port function(referred to as CH34x
UART),and how to operate CH34x to achieve serial communication with APK. This function is based on
the Android USB Host protocol,users can call the relevant API to achieve communication with the
Android devices.

Android Host, USB Device, Serial Device, the relationship between the three as shown below:

The Android API interfaces which operate CH34x serial ports are based on Android 3.1 and above
system, the conditions of using CH34x serial port Android driver:

1. Need to be based on Android 3.1 and above system
2. Android devices have a USB Host or OTG interface
This document will focus on the communication API interface between Android USB Host and

Device and operating instructions for the DEMO.
For Android USB Host protocol, you can refer to the Google documentation.

Android

USB Host

（OTG）

(3.1 or

Higher)

USB Channel

CH34x

Convers

ion

Chips

UART

PC/MCU/

Other

Serial

Devices

USB HOST USB Device



CH34x Serial Port Android Program Manual 22

1. Android Host
The examples described in this document are written under Android 3.1 and above. The startup

parameters of Android application are the product-id and vendor-id defined in the device_filter.xml file.
The Android application is divided into two parts, as shown below:

2. Android USB To Uart Demo
2.1 UART
The operation of the CH34x UART provides EnumerateDevice, OpenDevice, UartInit, SetConfig,

WriteData and ReadData methods, and the WriteTimeOutMillis and ReadTimeOutMillis properties to
communicate with the CH34x UART modules. While providing CloseDevice interface to close the UART
Device, isConnected interface to determine whether the device is connected.

Programming should pay attention to the following points:
 Create CH34xUARTDriver object under the Application class to ensure that the application has

multiple Activity can transmit and receive data when switch Activity.
 Operation process: ResumeUsbList (or OpenDevice after EnumerateDevice ), UartInit, SetConfig,

then data could be transmitted or received after the implementation of process above.

Please refer to the implementation of the Demo provided by our company.

2.2 UART User-Layout

EnumerateDevice: Enum the CH34x devices
Prototype: public UsbDevice EnumerateDevice()
Returns the device of the CH34x enumerated, or null if there is no device

OpenDevice: Open CH34x device
Prototype: public void OpenDevice(UsbDevice mDevice)
mDevice: the CH34x device to open

ResumeUsbList: Enum and open the CH34x device, this function contains EnumerateDevice,
OpenDevice operation

Prototype: public int ResumeUsbList()
Return 0 if succeed, otherwise fail.

UartInit：CH34x device initialization

Android Host
CH34x UART

Applications

User Layout

CH34xDriver.jar(lib)



CH34x Serial Port Android Program Manual 33

Prototype: public boolean UartInit()
Return false if the initialization fails, otherwise return true.

SetConfig：Set the baud rate, data bits, stop bits, parity bits, and flow control of the UART
Prototype: public boolean SetConfig(int baudRate, byte dataBit, byte stopBit, byte parity, byte

flowControl)
baudRate: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600.

default：9600
dataBits: 5, 6, 7, or 8 data bits. Default: 8 data bits.
stopBits: 0 -> 1 stop bit, 1 -> 2 stop bits. default: 1.
Parity: 0 -> none, 1 -> odd, 2 -> even, 3 -> mark, 4 -> space. default：none
flowControl: 0 -> none, 1 -> CTS/RTS. default: none
Return false if setting fails, otherwise return true.

WriteData: Send data
Prototype: public int WriteData(byte[] buf, int length)
buf: send buffer
length: send length
Return the number of bytes written successfully

ReadData：Read data
Prototype: public int ReadData(char[] data, int length)
data ：receive buffer
length ：read length
Return the number of bytes read successfully

Prototype: public int ReadData(byte[] data, int length)
data ：receive buffer
length ：read length
Return the number of bytes read successfully

CloseDevice：Close device
Prototype: public void CloseDevice()

isConnected：Determine if the device is connected to the Android device
Prototype: public boolean isConnected()
Return false if the device is not connected to the system, and true indicates that the device is

connected

In addition to the interface API provided above, users can also set the read and write timeout based
on their own devices:

Prototype: public boolean SetTimeOut(int WriteTimeOut, int ReadTimeOut)
WriteTimeOut：Set write timeout, default 10000ms
ReadTimeOut：Set read timeout, default 10000ms



CH34x Serial Port Android Program Manual 44

3. Software operating instructions
Install the Demo provided by our company on the Android device with OTG interface

(CH34xUARTDemo.apk). If the software is installed for the first time, after the CH34x UART function
module is inserted, the system will automatically pop up the permission request dialog. Click "Use by
default for this USB device". After selecting the operation, the dialog will not pop up again unless the
Demo is re-installed; if you do not select "Use by default for this USB device" and directly determine the
operation, the software will pop up no permission dialog and request to exit.

When the Demo is using, the process of opening the device will perform ResumeUsbList to complete
the USB device enumeration, open the device, access to device resource information and other steps (or
use OpenDevice to open device after EnumerateDevice), then the user needs to set the baud rate, data bits ,
stop bits, parity and flow control and other parameters, click the “Config” button, the UART configuration
will be completed, then you can perform read and write operations.


